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Abstract—With the increasing popularity of GPS modules,
there are various urban applications relying on trajectory data
modeling. In this work, we study the problem to model the
vehicle trajectories by predicting the next road segment given
a partial trajectory. Existing methods that model trajectories
with Markov chain or recurrent neural network suffer from
issues of modeling, context and semantics. In this paper, we
propose a new trajectory modeling framework called Multi-task
Modeling for Trajectories (MMTraj), which avoids these issues.
Specifically, MMTraj uses multi-head self-attention networks for
sequential modeling, captures the overall road network as the
context information for road segment embedding, and performs
an auxiliary task of predicting the trajectory destination to better
guide the main trajectory modeling task (controlled by a carefully
designed gating mechanism). Extensive experiments conducted on
real-world datasets demonstrate the superiority of the proposed
method over the baseline methods.

Index Terms—Trajectory modeling; Road network; Multi-task
learning;Transformer

I. INTRODUCTION

With the increasing demand of location acquisition, GPS

modules have been widely adopted and generated a huge

set of trajectory data on road networks. Different from the

trajectories that are generated by flights [1] or pedestrians

[2] in free space, trajectories generated from road networks

are constrained with road topological structure. These large-

scale data based on road networks has empowered many

downstream applications, such as urban vehicle navigation [3],

popular route recommendation for drivers [4], travel time esti-

mation [5] and so on. Trajectory modeling, which models the

transition probabilities between two adjacent roads, is one of

the fundamental problems on trajectory data and has received

much attention in existing studies [6]–[8]. For example, it can

be applied to the traffic simulation [9] to generate some paths

for moving vehicles and simulate traffic conditions. It can

also help the government and transportation agency to conduct

traffic management and understand the overall traffic status in

the near future to facilitate urban planning.

A few methods have been explored for the trajectory mod-

eling problem. In [10], the authors use sample trajectories

to pre-train a bi-gram sequence model for generating city-

scale vehicular paths. In [7], the authors employ the first-

order Markov model to forecast the most frequent action (make

turning) at each road intersection for drivers’ routing behaviour

modeling. In [8], the authors explore Recurrent Neural Net-

work (RNN) based models for trajectory modeling, which can

deal with variable length trajectory sequences and capture the

constraints of topological structure on road network. However,

these existing methods still have limitations for the trajectory

modeling problem, which we explain as follows.

Firstly, Markov chain or bi-gram model is known to be

not sufficient to model the trajectory data that involves long-

term dependencies [11]. RNN-based methods can only capture

limited long-term dependencies and its inherently sequential

learning nature precludes parallelization [12]. We call this the

modeling issue. Secondly, while some existing methods such

as the one in [8] considers the road network context (e.g.,

the method in [8] predicts the next road to be one of the

neighboring roads of the current one), each road segment is

still treated as individual token ID and the overall road network

structure is not captured/utilized. We call this the context issue.

Thirdly, a trajectory may have some semantics behind (e.g.,

it has an underlying yet unknown destination), but they are

ignored by existing methods. We call this the semantics issue.

Understanding these limitations, we propose a new frame-

work called Multi-task Modeling for Trajectories (MMTraj),

which avoids the aforementioned issues of existing methods.

Firstly, to mitigate the modeling issue, we adopt multi-head

self-attention modules to encode the sequence information.

Transformer with multi-head self-attention mechanism [12]

has been proven to be more effective than RNN and adopted in

Natural Language Processing (NLP) language modeling task

[13]. Secondly, to solve the context issue, we use Graph Neural

Network (GNN) [14] to learn the overall geometrical topology

information of the road network and integrate the information

into the road segment embeddings as the context information.

Thirdly and most importantly, we model the a trajectory (i.e.,

to predict the next road segments) and predict the destination

of the trajectory jointly with a multi-task learning strategy

to solve the semantics issue. A specific gating mechanism is

designed to control the confidence with which we trust the

predicted destination information to help the main task of

trajectory modeling.

In particular, we explain the intuition of using the predicted

destination to guide the trajectory modeling with an example

shown in Fig. 1. We have a known current trajectory of a

vehicle (the black arrows), and it travels to the intersection A

of the road segments. We aim to model the vehicle trajectory

by predicting the next road segment that it would most

probably travel and score the likelihood of all of its choices

(1,2,3) at the intersection A. If we predict the road segment

of the destination is the one with red flag as shown in Fig. 1,
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there should be a higher probability for the driver to transit

to road segment 1 instead of other road segments since the

direction of this road segment is more towards the predicted

destination. Therefore, it would be beneficial to predict the

destination information as a guiding strategy to potentially

enhance overall trajectory modeling.

Fig. 1. Intuition of Trajectory Modeling with Destination Prediction

In summary, our major contributions in this work are listed

as below:

• To the best of our knowledge, this is the first attempt to

conduct trajectory modeling by predicting trajectory des-

tination information as guidance via a multi-task learning

strategy. A specific gating mechanism is designed for

the multi-task learning to adjust the usage of destination

information predicted and assist in the main task of

trajectory modeling.

• A new framework is designed with GNN and dual-

transformer architecture which utilize the overall geomet-

rical graph topology of road network and multi-head self-

attention mechanism in trajectory data sequence learning.

• We conduct extensive experiments on two real-world

mobility datasets and demonstrate better performance of

the proposed framework over the baseline methods.

II. RELATED WORK

Trajectory modeling has been applied to many related

problems on location based services. [15] proposes a hybrid

prediction algorithm to predict the moving object’s position in

some delta time, which adopts different prediction algorithms

according to the length of delta time. [16] adopts Markov

decision process and inverse reinforcement learning to mine

short-term and long-term evacuation behaviors for individuals.

In [17], the authors design a system for finding efficient

driving directions for a given destination, which benefits from

trajectory modeling leveraging on intelligence of experienced

drivers. [6] applies Bayesian Inverse Reinforcement Learning

(BIRL) [18], which is based on first-order Markov chain, to

model the transition probability. Most of these works apply

first-order Markov chain to model the next road transition,

however it is not suitable to capture the long-term depen-

dencies and has limitations of sparsity problem [19]. More

recently, [8] explores RNN for trajectory modeling, which can

deal with the variable length trajectory sequences and capture

the constraints of transitions (i.e., the next road segment can

only be one of the adjacent road segments of the current one).

In this paper, we follow the trajectory modeling setting in [8]

and investigate an auxiliary task of predicting the trajectory

destination to help with effective modeling. In addition, we

adopt a self-attention based model for trajectory modeling.

III. PROBLEM FORMULATION

A. Problem Definitions

The trajectory modeling problem was originally proposed

in [8]. Here, we review the basic definitions and explain the

problem formulation for trajectory modeling.

Definition 1 (Road Network). A road network can be repre-

sented as a directed graph G = (V,RS), where V is a set of

vertices, v ∈ V represents an intersection between two road

segments, RS is a set of edges, and each edge rs ∈ RS
represents a road segment in road network.

Definition 2 (Route). A route r = [ri]
k
i=1 is a sequence

of adjacent road segments, where ri represents the i-th road

segment, and k is the length of the route.

Definition 3 (Map-matched trajectory). A map-matched

trajectory T is a sequence of road segments based on the

underlying trajectory of a moving object after map matching.

Note that a map-matched trajectory is always a route.

Problem Statement. Given a road network G = (V,RS)
and a trajectory database D =

{
T (i)

}|D|
i=1

, we aim to obtain a

model that receives i travelled road segments (route r1:i) as

input and predicts the next road segment ri+1.

IV. METHODOLOGY

A. Framework Overview

We adopt the multi-task learning strategy for next road seg-

ment prediction (as the main task) and destination prediction

(as an auxiliary task). The overview of the multi-task learning

framework is shown in Fig. 2. The left side of the architecture

aims to predict the destination information at each step as

an auxiliary task. Then the predicted destination information

(d1 to dk−1) is passed as part of inputs to right side of the

architecture to predict the next road segment as the main task.

There are some common components for the two tasks: Road

Segment Embedding (RSE) Layer, Transformer Encoder and

Fully Connected (FC) Layer.

For the auxiliary task, the input road segments (ri) firstly

pass through the RSE layer A and are embedded and pro-

cessed as vector representations (embeddings) prepared for

the sequential learning. These embeddings run through the

Transformer Encoder A, decoded by a FC layer A and pass

through a softmax function to predict the destination IDs (di)
at each step. Next for the main task, the input sequences of

road segment IDs (ri) together with the predicted destination

IDs (di) pass through RSE layer B. Normally the farther

we travelled, with more confidence we would make use of

the predicted destination information obtained in the auxiliary

task. Therefore, instead of directly concatenating the input

road segment embeddings and the predicted destination em-

beddings, a specific Multi-Task learning with Gating (MTG)
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Fig. 2. Framework Overview

mechanism is designed to control the usage of embedded

predicted destination information (ui) from the auxiliary task

to the main task. Then input road segment embeddings and

the predicted destination embeddings after the gate are con-

catenated, passed through the Transformer Encoder B for

sequential learning and decoded by FC layer B. Finally, a

non-adjacency masked softmax is utilized [20] for the output

of the FC layer B and helps mask out the non-adjacent roads

during predicting for final next road segment. Next, we present

the key modules of this framework in detail.

B. Road Segment Embedding (RSE) Layer

The first module is to learn the input road segment embed-

dings. In this paper, we propose to leverage the Graph Neural

Networks (GNN) techniques by considering the whole road

network as a geometrical graph and learn node embeddings

(road segment embeddings). We utilize the road network

topology information, transform each road segment rs to a

node in the graph and formulate the adjacency matrix of our

road network graph. We take the road segment IDs, embed

them as one hot vectors and feed them to the GNN. Since

we have two different tasks (auxiliary task and main task), we

design two separate Road Segment Embedding (RSE) Layers

to learn the embeddings.

The zoom-in details view of the Road Segment Embedding

(RSE) Layer is as shown at upper-right side of Fig. 2.

We apply an existing GNN method GCN [21] on the road

network graph to transform an one-hot representation of a

node (which represents a road segment) to a low dimensional

feature embedding. All node feature embeddings together will

form a trainable Road Embedding Table (with dimension

EmbeddingSize · |RS|). Then we perform one of pooling

strategies (mean pooling) on Road Embedding Table here to

obtain a graph embedding ē [22]. The input road segments (r1

to rk−1) will pass the RSE layer and query out the respective

road segment embedding vectors directly from the trainable

Road Embedding Table. In particular, for the road segment

embedding layer A, the graph embedding ē obtained from

GNN is concatenated with the individual queried input road

segment embedding and their concatenation output serves as

the final input (ei) into the next module Transformer Encoder

A. Our road segment embedding layer differs from existing

ones [23]–[25] in that it combines the road network embedding

with the road segment embeddings to better capture the overall

topological information of the road network.

C. Transformer Encoder

The road segment embeddings obtained from the RSE layer

are applied as part of inputs to transformer encoder [12]. To

avoid the loss of sequential information of trajectory, we also

add the popular sinusoidal positional encoding pi into the

input embeddings ei as the final input xi = ei + pi. We

adopt Scaled Dot-Product Attention, which can be treated as

mapping a query (Q) and a set of key-values (K, V ) pairs

to an output vector. The output vector is a weighted sum of

values (V ), and the weights can be calculated using query

and key through a compatibility function. Mathematically, it

is defined as

Attention (Q,K,V) = softmax

(
QKT

√
dimk

)
V (1)

Furthermore, we use multi-head self-attention to enhance the

learning of road segment sequence. Given the input repre-

sentations X = [x1,x2, ...,xk−1] , the final output of multi-

head attention is marked as Z, where W is the self-attention

learning parameters:

Z = MHAttn(X) = [head1, . . . , headh] ·WO (2)
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headi = Attention
(
XWQ

i ,XWK
i ,XWV

i

)
(3)

We also follow [12] with the setting of position-wise feed-

forward network, residual connection and layer normaliza-

tion [26]. The final output of the transformer encoder is

denoted as H/H′ (separated with vector hi/h
′
i at the i-th

step as shown in the Fig. 2). Here we design two transformer

encoders for sequence learning since we have two different

tasks and prediction targets.

D. Multi-Task Learning with Gating (MTG) Mechanism

As mentioned in the framework overview section, multi-task

learning is adopted to jointly train for the next road segment

prediction process while predicting the destination information

for guidance at the same time. The transformer encoder A

encodes the road segment embedding sequence information,

which then is passed through a fully connected layer for

predicting the destination ID at each step. The predicted

destination IDs together with the input road segment sequence

are both embedded through the Road Segment Embedding

layer B.

In the main task, a gating mechanism is specifically de-

signed for controlling the confidence and usage of predicted

destination information instead of concatenating the two input

embeddings directly. The idea behind is that it tends to be more

difficult to predict the destination ID when we have traveled a

shorter distance only. The zoom-in details view of the gating

mechanism is provided at the lower-right side of Fig. 2. Instead

of designing a relational polynomial function to address the

relationship between travelled distance and gating confidence,

we adopt a linear neural network (FC layer) to learn this.

Mathematically, the travelled distance (D) is calculated by the

summation of the lengths of travelled road segments. We apply

the exponential decay function to simulate the natural decay

relationship and its output is also a variable between 0 and

1 to represent a confidence value. The gating function g is

designed as shown in the equation below. The gating gi will

perform element-wise dot product with the embedding ui (as

shown in Fig. 2).

gi = exp (−max (0,Wg [Di] + bg)) (4)

E. Non-Adjacency Masked Softmax

A non-adjacency masked softmax is utilized [20] for the

final fully connected layer to predict the next road segment.

This is to capture the road network topology and adjacency

relationship so that the next road predicted is constrained

within the road adjacency list instead of the whole road

segment set RS .

P (r̂i+1 = j|hi) =
exp(h�i ·wj) ·Mri,j∑

p∈RS exp(h�i ·wp) ·Mri,p
(5)

where hi is the output of the transformer at step i, RS is the

set of all road segments, {wj |∀j ∈ RS} is j-th column vector

from a trainable parameter matrix W of the fully connected

layer, Mri ∈ {0, 1}|RS| is the non-adjacency road segment

mask of road segment ri.

F. Training

The training of our model is end to end. During the

training phase, the model predicts destination ID (auxiliary

task) and next road segment ID (main task) simultaneously.

The loss functions of two tasks are defined as Ldest and Lmain

below based on cross-entropy loss. Specifically, the auxiliary

loss Ldest is calculated by cross-entropy using the last road

segment at drop off point as the ground-truth destination ID.

Overall, the final model optimization function is weighted

combination of these two loss functions and formulated as:

L(θ) = Lmain(θ) + λLdest(θ) (6)

where λ is the parameter of multi-task loss weight and θ
denotes the parameters of the model. The model is trained

to minimize the loss L(θ).
V. EXPERIMENTS

A. Experiment setting

1) Datasets: We use two real-world taxi trajectory datasets

and the road network from OpenStreetMap 1 to validate the

effectiveness of our model. The trajectories of two cities,

Chengdu and Xi’an are obtained from public datasets released

by DiDi Chuxing 2. There are 2,761 (5,403 for Xi’an dataset)

road segments in the Chengdu selected area and total sample

of 696,477 trajectories for Chengdu dataset (752,849 for Xi’an

dataset). We split the dataset into training set, validation set

and test set with a splitting ratio of 8:1:1. We perform map

matching [27] process on the raw GPS trajectories and map

them to the sequences of road segments for preparation of our

task.

2) Evaluation Metrics: Similar to the previous work [8],

the negative log-likelihood (NLL) and prediction accuracy

(ACC) are adopted as the evaluation metric. ACC calculates

the total prediction accuracy of next road segments by the road

with the maximum predicted probability. The below equations

are formulated for a test set with N trajectories,

NLL = − 1

N

N∑
i=1

ki−1∑
j=1

logP (rj+1 | r1:j) (7)

ACC =
1∑N

i=1 ki

ki−1∑
j=1

1 {argmaxr∈RS P (r | r1:j) = rj+1}
(8)

B. Baselines

• HA (Historical Average) is a common statistical method

to calculate the average transition rate of the two adjacent

road segments based on a historical trajectory database.

We predict the next road segment by choosing the one

with highest historical transition rate.

• N-gram [28]. The traditional methods using the second

and third-order Markov chains serve as basic baseline,

and the conventional name N-gram is used to label them.

1http://www.openstreetmap.org
2https://outreach.didichuxing.com
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TABLE I
MODEL PERFORMANCE COMPARISON

Methods
Chengdu Xi’an

ACC NLL ACC NLL
HA 83.93% 8.02 84.41% 8.57
Tri-gram 85.48% 7.00 85.58% 8.08
4-gram 86.28% 6.47 86.18% 7.81
RNN 87.97% 6.27 87.82% 7.10
CSSRNN 88.01% 6.17 87.83% 6.95
LPIRNN 88.02% 6.15 87.85% 6.94
MMTraj – MTG&RSE 88.14% 6.22 87.87% 7.03
MMTraj – MTG 88.17% 6.17 87.90% 6.98
MMTraj – RSE 90.55% 5.23 90.04% 5.94
MMTraj – Transformer 90.60% 5.12 90.06% 5.79
MMTraj 90.66% 5.05 90.17% 5.77

Following the same setting, we adopt Laplace smoothing

for sparsity [29] which only smooths legal transitions.

• RNN [30] is a popular deep learning based method to

build the sequence model directly adopting traditional

RNN. We apply LSTM with the same embedding size

as our model MMTraj uses.

• CSSRNN [8] is the state-of-art model for the trajec-

tory modeling setting. The method is an extension of

traditional RNN and addresses the issue of topological

constraints.

• LPIRNN [8] is another high-performance variant related

to CSSRNN and it incorporates the topological informa-

tion externally and performs the prediction by multiple

individual tasks.

C. Variants for Ablation Study

We also implement and compare MMTraj with different

variants of our model for the ablation study later.

• MMTraj-MTG&RSE: The basic model we implement

with a single transformer encoder [12] using non-

adjacency masked softmax for next road segment pre-

diction. We remove the multi-task learning with gating

(MTG) mechanism and the road segment embedding

(RSE) parts.

• MMTraj-MTG: We remove multi-task learning with

gating (MTG) mechanism from our model MMTraj.

• MMTraj-RSE: We replace the road segment embedding

(RSE) layer with a traditional FC embedding layer.

• MMTraj-Transformer: We replace the dual transformer

encoder with dual LSTM.

D. Results

1) Overall Performance: In this section, we compare our

model with the baselines over the two real world taxi trajec-

tory datasets. The performance accuracy (ACC) of different

approaches for next road prediction is presented in Table I. It

can be observed that our model MMTraj clearly outperforms

all the baselines and variants over both datasets.

First, Historical Average (HA) method, which is a statistical

method to calculate the average transition rate of any two

adjacent road segments based on historical data, provides a

fundamental performance range (around 83% to 84%) of these

two datasets. Markov chain based models (Tri-gram, 4-gram)

perform better than HA because they are learned as a model

based method instead of purely considering historical statistics.

For RNN based models, LPIRNN seems to perform slightly

better than the other RNN variants. As mentioned in [8], for

datasets with high density, LPIRNN may perform better than

CSSRNN.

It is shown that our full model (MMTraj) obtains the best

performance across all of the evaluation metrics. Our approach

outperforms the current best baseline LPIRNN by a delta value

2.64% on Chengdu dataset and 2.32% on Xi’an dataset. It

also achieves the lowest NLL among all the methods across

both datasets. The fundamental reasons for such improvement

mainly consist of two aspects. First, the main reason is that we

design a multi-task learning framework with gating mechanism

for modeling trajectory meantime predicting destination as

an auxiliary task for guidance. Second, we study some key

components such as Road Segment Embedding (RSE) layer

and transformer encoder to enhance the learning capacity

further. We will perform the ablation study in next section.

2) Ablation Study: We try to elaborate some ablation

analysis to understand some impacts of key components on

model performance.

MMTraj-MTG&RSE is the basic version we implement

using a single transformer encoder with non-adjacency masked

softmax for prediction. The overall module ACC performance

drops much (2.52% and 2.3%) respectively on two datasets

comparing with our full model MMTraj. It demonstrates

that MTG and RSE module together make main contribution

in the model performance improvement. The second variant

(MMTraj-MTG) removing multi-task learning with gating

(MTG) mechanism has the ACC performance drop 2.49% and

2.27% respectively comparing with the full model MMTraj on

the Chengdu and Xi’an datasets It shows that the multi-task

design with gating plays a significant role in our full model

design. It also shows that our idea of predicting the destination

as guidance works as expected and using gating mechanism to

control the usage of predicted destination information assists

in the next road segment prediction.

The third variant (MMTraj-RSE) removing road segment

embedding (RSE) layer shows around 0.1% ACC drop com-

paring with the full model. Possibly it is due to the road

network adjacency constraints are already considered during

decoding through our non-adjacency masked softmax function.

Based on the observation, RSE can still consistently provide

a certain of further improvement over other baselines and

this is also indispensable especially when there are huge

number of road transitions involved in all trajectories. The

fourth variant (MMTraj-Transformer) is that we replace dual

transformer encoder with dual LSTM and keep MTG and RSE

the same. The overall ACC performance drops a bit over the

two datasets comparing with our full model. However, the

overall ACC performance is still higher than the best baseline

by 2.58% and 2.21% respectively on two datasets. It can be

inferred that the idea and overall framework of multi-task

learning with gating mechanism make main contribution in the

model performance improvement while RSE and transformer
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encoder act as facilitators to further improve the performance.

VI. CONCLUSION

In this paper, we propose a new end-to-end Multi-task learn-

ing model MMTraj for trajectory modeling. MMTraj adopts

multi-head self-attention networks for sequential modeling,

captures the overall road network via GNN as the context

information for road segment embedding, and performs an

auxiliary task of predicting the trajectory destinations to help

with the main trajectory modeling task (controlled by a care-

fully designed gating mechanism). Extensive experiments are

conducted on two real-world mobility datasets and demon-

strate the superiority of the proposed framework (over 2.3%

improvement) compared with the baseline methods. In the

future, we plan to explore other settings of trajectory modeling

(e.g., with more context information including the user, time

and external factors available).
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